Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA
George Priest (),
Laura Stimely (),
Nathan Wood (),
Ian Madin () and
Rudie Watzig ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 80, issue 2, 1056 pages
Abstract:
Previous pedestrian evacuation modeling for tsunamis has not considered variable wave arrival times or critical junctures (e.g., bridges), and did not effectively communicate multiple evacuee travel speeds. We summarize an approach that identifies evacuation corridors, recognizes variable wave arrival times, and produces a map of minimum pedestrian travel speeds to reach safety, termed a “beat-the-wave” (BTW) evacuation analysis. We demonstrate the improved approach by evaluating difficulty of pedestrian evacuation of Seaside, Oregon, for a local tsunami generated by a Cascadia subduction zone earthquake. We establish evacuation paths by calculating the least-cost distance (LCD) to safety for every grid cell in a tsunami hazard zone using geospatial, anisotropic path distance algorithms. Minimum BTW speed to safety on LCD paths is calculated for every grid cell by dividing surface distance from that cell to safety by the tsunami arrival time at safety. We evaluated three scenarios of evacuation difficulty: (1) all bridges are intact with a 5-min evacuation delay from the start of earthquake, (2) only retrofitted bridges are considered intact with a 5-min delay, and (3) only retrofitted bridges are considered intact with a 10-min delay. BTW maps also take into account critical evacuation points along complex shorelines (e.g., peninsulas, bridges over shore-parallel estuaries) where evacuees could be caught by tsunami waves. The BTW map is able to communicate multiple pedestrian travel speeds, which are typically visualized by multiple maps with current LCD-based mapping practices. Results demonstrate that evacuation of Seaside is problematic seaward of the shore-parallel waterways for those with any limitations on mobility. Tsunami vertical evacuation refuges or additional pedestrian bridges may be effective ways of reducing loss of life seaward of these waterways. Copyright Springer Science+Business Media Dordrecht (outside the USA) 2016
Keywords: Tsunami evacuation difficulty; Seaside; Oregon; Anisotropic path distance; Cascadia; Earthquake (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-2011-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:80:y:2016:i:2:p:1031-1056
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-015-2011-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().