Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms
Gaofeng Jia,
Alexandros Taflanidis (),
Norberto Nadal-Caraballo,
Jeffrey Melby,
Andrew Kennedy and
Jane Smith
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 81, issue 2, 909-938
Abstract:
This paper investigates the development of a kriging surrogate model for storm surge prediction utilizing an existing database of high-fidelity, synthetic storms. This surrogate model (metamodel) provides a fast-to-compute mathematical approximation to the input/output relationship of the computationally expensive simulation model that created this database. The implementation is considered over a large coastal region composed of nearshore nodes (locations where storm surge is predicted) and further examines the ability to provide time-series forecasting. This setting creates a high-dimensional output (over a few thousand surge responses) for the surrogate model with anticipated high spatial/temporal correlation. Kriging is considered as a surrogate model, and special attention is given to the appropriate parameterization of the synthetic storms, based on the characteristics of the given database, to determine the input for the metamodel formulation. Principal component analysis (PCA) is integrated in this formulation as a dimension reduction technique to improve computational efficiency, as well as to provide accurate and continuous predictions for time-dependent outputs without the need to introduce time averaging in the time-series forecasting. This is established by leveraging the aforementioned correlation characteristics within the initial database. A range of different implementation choices is examined within the integrated kriging/PCA setting, such as the development of single or multiple metamodels for the different outputs. The metamodel accuracy for inland nodes that have remained dry in some of the storms in the initial database is also examined. The performance of the surrogate modeling approach is evaluated through a case study, utilizing a database of 446 synthetic storms for the Gulf of Mexico (Louisiana coast). The output considered includes time histories for 30 locations over a period of 45.5 h with 92 uniform time steps, as well as peak responses over a grid of 545,635 nearshore nodes. High accuracy and computational efficiency are observed for the proposed implementation, whereas including the prediction error statistics provides estimations with significant safety margins. Copyright Springer Science+Business Media Dordrecht 2016
Keywords: Surrogate model; Kriging; Principal component analysis; Time-dependent output; Storm surge; High-fidelity hurricane surge model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-2111-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:81:y:2016:i:2:p:909-938
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-015-2111-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().