Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
Omid Rahmati (),
Ali Haghizadeh (),
Hamid Reza Pourghasemi () and
Farhad Noormohamadi ()
Additional contact information
Omid Rahmati: Lorestan University
Ali Haghizadeh: Lorestan University
Hamid Reza Pourghasemi: Shiraz University
Farhad Noormohamadi: Lorestan University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 82, issue 2, No 23, 1258 pages
Abstract:
Abstract Gully erosion is a key issue in natural resource management that often has severe environmental, economic, and social consequences. The objective of the present study is to assess the capability of weights-of-evidence (WofE) and frequency ratio (FR) models for spatial prediction of gully erosion susceptibility and characterizing susceptibility conditions at Chavar region, Ilam province, Iran. At first, a gully erosion inventory map is prepared, using multiple field surveys. In total, of the 63 gullies which have been identified, 44 (70 %) cases are randomly algorithm selected to build gully susceptibility models, while the remaining 19 (30 %) cases are used to validate the models. The effectiveness of gully erosion susceptibility assessment via GIS-based models depends on appropriate selection of the conditioning factors which play an important role in gully erosion. Learning vector quantization (LVQ), one of the supervised neural network methods, is employed in order to estimate variable importance. In this research, the selected conditioning factors are: lithology, land use, distance from river, soil texture, slope degree, slope aspect, plan curvature, topographic wetness index, drainage density, and altitude. Finally, validation of the gully dataset which has not been utilized during the spatial modeling process is applied to validate the gully susceptibility maps. The receiver operating characteristic curves for each gully susceptibility map (i.e., produced by WofE and FR) are drawn, and the areas under the curves (AUC) are calculated. The results show that the gully erosion susceptibility map produced by the frequency ratio model (AUC = 78.11 %) functions well in prediction compared with the WofE model (AUC = 70.07 %). Furthermore, LVQ results reveal that distance from river, drainage density, and land use are the most effective factors.
Keywords: Gully erosion assessment; Bivariate statistical models; GIS; Learning vector quantization; Iran (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2239-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:82:y:2016:i:2:d:10.1007_s11069-016-2239-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2239-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().