Geohazards and thermal regime analysis of oil pipeline along the Qinghai–Tibet Plateau Engineering Corridor
Wenbing Yu,
Fenglei Han (),
Weibo Liu and
Stuart A. Harris
Additional contact information
Wenbing Yu: Chinese Academy of Sciences
Fenglei Han: Chinese Academy of Sciences
Weibo Liu: Chinese Academy of Sciences
Stuart A. Harris: The University of Calgary
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 83, issue 1, No 10, 193-209
Abstract:
Abstract This paper investigates the influence of geohazards on the existing oil pipeline and the potential interaction between the proposed new oil pipeline and preexisting transportation structures along the Qinghai–Tibet Plateau Engineering Corridor. The current Golmud–Lhasa oil pipeline has been seriously affected by retrogressive thaw slumps caused by surface water being channeled through culverts causing serious erosion problems. Climate data show that the air temperature increased at a rate of 0.0281 °C/a for the past 60 years along the corridor. To design the new pipeline, the effects of revegetation, climate warming and pipe insulation on permafrost have been simulated using numerical modeling. A warm oil pipeline would potentially lead to significant thawing of the permafrost foundation. When climate warming is not considered, insulation of the buried pipe could keep the permafrost stable. Revegetation and the use of utilidors could counteract the influence of heat input from the oil pipe, and even a 1.1 °C/50a climate-warming rate. However, for the 2.6 °C/50a climate-warming-rate scenario, they are inadequate to keep the permafrost stable. Vegetation cover is important to reduce the effect of climate warming on both the natural and the human-impacted permafrost. Revegetation after construction is important to protect the permafrost environment as well as the oil pipeline itself.
Keywords: Permafrost; Climate warming; Oil pipeline; Hazards; Anthropogenic impacts; Revegetation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2308-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2308-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2308-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().