Simultaneous optimization of evacuation route and departure time based on link-congestion mitigation
Zhengfeng Huang,
Pengjun Zheng,
Gang Ren,
Yang Cheng and
Bin Ran
Additional contact information
Zhengfeng Huang: Ningbo University
Pengjun Zheng: Ningbo University
Gang Ren: Southeast University
Yang Cheng: University of Wisconsin, Madison
Bin Ran: University of Wisconsin, Madison
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 83, issue 1, No 29, 575-599
Abstract:
Abstract Link-level congestion, such as link spillback and long intersection queues, should be avoided during emergency evacuation. The reason is that these local traffic incidents can cause traffic safety risks and hinder evacuation tasks. To determine reliable routes and departure times for the whole evacuation, we establish the link-congestion mitigation-based dynamic evacuation route planning (LCM-DERP) model. The distinct difference with the typical DERP model lies in the objective composition. The system cost objective in our model consists of not only total evacuation time but also external congestion cost. The penalization for link spillback and long intersection queues is used to represent external congestion cost. An improved cell transmission structure, composed of tail cell and head cell and approach cell, is proposed to simulate dynamic traffic flow. Specifically, tail cell and head cell can detect the information of link spillback and long intersection queue separately. This function enables the representation of external congestion cost expressed by multiplying link-level congestion vehicles with penalty parameter. A method of successive average, including a calculation of the local path marginal cost, is used to solve the model. We applied the LCM-DERP model on a road network around Olympic Stadium in Nanjing, China, to test its effectiveness in the aspect of link-congestion control. Compared with the typical DERP model, our method can improve system cost, especially in the high demand range, wherein the reduced external congestion cost is larger than this reduced system cost.
Keywords: Emergency evacuation; System optimum; Cell transmission; Link-level congestion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2336-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2336-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2336-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().