Design of a support vector machine with different kernel functions to predict scour depth around bridge piers
Hassan Sharafi,
Isa Ebtehaj,
Hossein Bonakdari () and
Amir Hossein Zaji
Additional contact information
Hassan Sharafi: Razi University
Isa Ebtehaj: Razi University
Hossein Bonakdari: Razi University
Amir Hossein Zaji: Razi University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 84, issue 3, No 31, 2145-2162
Abstract:
Abstract Scour depth is a vital subject in bridge pier design. The exact estimation of scour depth can prevent damage caused by bridge failure and facilitate optimal bridge pier design. In this article, the support vector machine (SVM) method is applied to predict scour depth around bridge piers. The SVM technique is developed using six kernel functions, including polynomial, sigmoid, exponential, Gaussian, Laplacian and rational quadratic. Scour depth is modeled as a function of three dimensionless variables, namely geometric characteristics, flow and bed materials. The performance of SVM (in training and testing) is evaluated using dimensionless variables gathered from a wide range of field datasets. The SVM designed using the polynomial kernel function produced the most accurate results compared with the other kernel functions (RMSE = 0.078, MRE = −0.181, MARE = 0.332, MSRE = 0.025). Sensitivity analysis is performed to identify the effect of each dimensionless parameter on predicting scour depth around bridge piers. The testing results of SVM-polynomial are compared with that of the artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS) and nonlinear regression-based methods presented in this study and in the literature. Evidently, SVM-polynomial predicted scour depth with higher accuracy and lower error than when using ANN, ANFIS and nonlinear regression-based equations. Moreover, as an alternative method, a simple program is presented by the SVM-polynomial to calculate scour depth around bridge piers.
Keywords: Bridge pier; Scour depth; Support vector machine (SVM); Sensitivity analysis; Traditional equation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2540-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2540-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2540-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().