EconPapers    
Economics at your fingertips  
 

Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models

Xiaojun Guo, Jianbin Huang, Yong Luo (), Zongci Zhao and Ying Xu
Additional contact information
Xiaojun Guo: Tsinghua University
Jianbin Huang: Tsinghua University
Yong Luo: Tsinghua University
Zongci Zhao: Tsinghua University
Ying Xu: China Meteorological Administration

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 84, issue 3, No 40, 2299-2319

Abstract: Abstract Based on the historical and future outputs of 17 coupled model intercomparison project phase 5 (CMIP5) models, simulation of the precipitation extremes in China was evaluated under baseline climate condition compared to a gridded daily observation dataset CN05.1. The variations in precipitation extremes for eight global warming targets were also projected. The 17 individual models and the multi-model ensemble accurately reproduced the spatial distribution of precipitation extremes, although they were limited in their ability to capture the temporal characteristics. A notable dry bias existed in Southeast China, while a wet bias was present in North and Northwest China. The precipitation extremes in China were projected to be more frequent and more intense as global temperature rise reached the 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C warming targets. The projected percentage changes in the annual number of days with precipitation >50 mm (R50) and total precipitation during days in which the daily precipitation exceeds the 99th percentile (R99p) are projected to increase by 25.81 and 69.14 % relative to the baseline climate for a 1.5 °C warming target, and by 95.52 and 162.00 % for a 4.0 °C warming target, respectively. As the global mean temperature rise increased from 1.5 to 5 °C, the subregions considerably affected by the East Asian summer monsoon (e.g., Southwest China, South China, and the Yangtze-Huai River Valley) were projected to experience a more dramatic increase in extreme precipitation events, in both number of days and intensity, while North and Northwest China were projected to suffer from relatively slight increases. The model uncertainties in the projected precipitation extremes in China by 17 CMIP5 models increase as global temperature rise increases.

Keywords: Precipitation extremes; Eight global warming targets; China; CMIP5 models; RCP8.5 scenario (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2553-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2553-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-016-2553-0

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2553-0