Disaster prediction model based on support vector machine for regression and improved differential evolution
Xiaobing Yu ()
Additional contact information
Xiaobing Yu: Nanjing University of Information Science and Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 85, issue 2, No 17, 959-976
Abstract:
Abstract The kernel parameters setting of SVM influences prediction precision. The hybrid model based on SVM for regression and improved differential evolution is proposed to enhance the prediction precision. The improved differential evolution is used to optimize the kernel parameters. The improved differential evolution algorithm employs two trial vector generation strategies and two control parameter settings. The first-generation strategy is with best solution, and the second strategy is without best solution. Three categories of disasters time series including flood, drought and storm from Ministry of agriculture of China are used to verify the validity of the proposed model. Compared with the grid SVM and other models, the proposed hybrid model improves the prediction precision of SVM.
Keywords: Support vector machine; Disaster prediction; Differential evolution; Hybrid model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2613-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:85:y:2017:i:2:d:10.1007_s11069-016-2613-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2613-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().