Deriving short-duration rainfall IDF curves from a regional climate model
M. T. Vu (),
V. S. Raghavan and
S.-Y. Liong
Additional contact information
M. T. Vu: National University of Singapore (NUS)
V. S. Raghavan: National University of Singapore (NUS)
S.-Y. Liong: National University of Singapore (NUS)
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 85, issue 3, No 27, 1877-1891
Abstract:
Abstract Climate change is expected to exacerbate the extremes in the climate variables. Being prone to harsh climate impacts, it is very crucial to study extreme rainfall-induced flooding for short durations over regions that are rapidly growing. One way to study the extremes is by the application of the Intensity-Duration-Frequency (IDF) curves. The annual maximum rainfall intensity (AMRI) characteristics are often used to construct these IDF curves that are being used in several infrastructure designs for urban areas. Thus, there is a need to obtain high temporal and spatial resolution rainfall information. Many urban areas of developing countries lack long records of short-duration rainfall. The shortest duration obtained is normally at a daily scale/24 h. Thus, it is very crucial to find a methodology to construct IDF curves for short-duration rainfall (sub-daily) for these urban areas. Vietnam is a developing country with rapidly increasing population as well as urbanization. The fast extension of urban area that does not have adequate preparedness to cope with climate change is certainly a big risk to life and economy. The limitation in studying impacts over many regions of Vietnam is the need for robust and sufficient data, both spatial and temporal. To overcome this limitation, this paper describes constructing IDF curves using 6 hourly rainfall AMRI output from a regional climate model (RCM) that downscaled a global climate model (GCM) output at high spatial and temporal resolutions. The study region is Hanoi, the capital city of Vietnam. The sub-daily IDF curves for current and future climate for Hanoi were constructed from 1 to 24 h based on the simple scaling approach. The findings indicate that it is likely that Hanoi might experience more flooding conditions in the future with the AMRI increasing between 34 and 48% for all return periods from 10 to 200 years. The methodology adopted in this paper is suitable for similar ungauged areas elsewhere and will provide useful information in devising adequate planning strategies for drainage designs.
Keywords: Flooding; IDF; Simple scaling; RCM; Climate change (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2670-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:85:y:2017:i:3:d:10.1007_s11069-016-2670-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2670-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().