Automatic detection of wet-snow avalanche seismic signals
Conny Hammer (),
Donat Fäh and
Matthias Ohrnberger
Additional contact information
Conny Hammer: ETH Zürich
Donat Fäh: ETH Zürich
Matthias Ohrnberger: University of Potsdam
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 86, issue 2, No 6, 618 pages
Abstract:
Abstract Avalanche activity is an important factor when estimating the regional avalanche danger. Moreover, a complete and detailed picture of avalanche activity is needed to understand the processes that lead to natural avalanche release. Currently, information on avalanche activity is mainly obtained through visual observations. However, this involves large uncertainties in the number and release times, influencing the subsequent analysis. Therefore, alternative methods for the remote detection of snow avalanches in particular in non-observed areas are highly desirable. In this study, we use the excited ground vibration to identify avalanches automatically. The specific seismic signature of avalanches facilitates the objective detection by a recently developed classification procedure. A probabilistic description of the signals, called hidden Markov models, allows the robust identification of corresponding signals in the continuous data stream. The procedure is based upon learning a general background model from continuous seismic data. Then, a single reference waveform is used to update an event-specific classifier. Thus, a minimum amount of training data is required by constructing such a classifier on the fly. In this study, we processed five days of continuous data recorded in the Swiss Alps during the avalanche winter 1999. With the restriction of testing large wet-snow avalanches only, the presented approach achieved very convincing results. We successfully detect avalanches over a large volume and distance range. Ninety-two percentage of all detections (43 out of 47) could be confirmed as avalanche events; only four false alarms are reported. We see a clear dependence of recognition capability on run-out distance and source–receiver distance of the observed events: Avalanches are detectable up to a source-receiver distance of eight times the avalanche length. Implications for analyzing a more comprehensive data set (smaller events and different flow regimes) are discussed in detail.
Keywords: Snow avalanche recognition; Automatic detection; Avalanche forecasting; Hidden Markov model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2707-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2707-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-016-2707-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().