EconPapers    
Economics at your fingertips  
 

Study on the CO2 emissions embodied in the trade of China’s steel industry: based on the input–output model

Li Li, Yalin Lei (), Chunyan He, Sanmang Wu and Jiabin Chen
Additional contact information
Li Li: China University of Geosciences
Yalin Lei: China University of Geosciences
Chunyan He: China University of Geosciences
Sanmang Wu: China University of Geosciences
Jiabin Chen: Chinese Academy of Land and Resource Economics

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 86, issue 3, 989-1005

Abstract: Abstract The impact of trade on the environment and the climate has become a focus of attention. Tending to develop industries with higher added values, developed countries rely on importing high energy consumption goods from developing countries, and however, some CO2 emissions are embodied in the process of import. Currently, the accounting method of the territorial responsibility used to get the international data of greenhouse gas inventories ignores the difference between domestic consumption and export demands. Thus, developing countries bear the responsibility of pollution emissions from the export. The steel industry is an important basic industry of China’s national economy as well as a vital part in the industrial system. With the expansion of trade scale, the impact of the export and import of China’s steel on CO2 emissions is growing. This paper studied the embodied CO2 emissions in the trade of China’s steel from 2005 to 2014, using the input–output model and the trade data of the China’s steel imports and exports. The results indicate that (1) the complete CO2 emissions of China’s steel industry are high. (2) The increase in the export scale makes the embodied CO2 emissions in the trade of China’s steel export increase, and (3) China is a net exporter of CO2 emissions in the steel trade. Especially after 2007, the value of China’s steel exports has been larger than that of China’s steel imports, so China had borne much CO2 emissions responsibility in the trade of China’s steel. Therefore, this paper puts forward that, in the future, the export structure of goods should be optimized into the high-tech products with the high added value, low energy consumption and low carbon emissions, and meanwhile, service industry is promoted to improve technical support to reduce CO2 emissions in the steel industry.

Keywords: Steel trade; Embodied CO2 emissions; Input–output model; China (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://link.springer.com/10.1007/s11069-016-2727-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2727-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla ().

 
Page updated 2019-11-06
Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2727-9