EconPapers    
Economics at your fingertips  
 

Hybrid broadband simulation of strong-motion records from the September 16, 1978, Tabas, Iran, earthquake (M w 7.4)

H. Vahidifard (), H. Zafarani () and S. R. Sabbagh-Yazdi
Additional contact information
H. Vahidifard: K. N. Toosi University of Technology
H. Zafarani: International Institute of Earthquake Engineering and Seismology (IIEES)
S. R. Sabbagh-Yazdi: K. N. Toosi University of Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 87, issue 1, No 4, 57-81

Abstract: Abstract This paper presents a simulation of three components of near-field ground shaking recorded during the main shock at three stations of the September 16, 1978, Tabas (M w = 7.4), Iran, earthquake, close to the causative fault. A hybrid method composed of a discrete wavenumber method developed by Bouchon (Bouchon in Bull Seismol Soc Am 71:959–971, 1981; Cotton and Coutant in Geophys J Int 128:676–688, 1997) and a stochastic finite-fault modeling based on a dynamic corner frequency proposed by Motazedian and Atkinson (Bull Seismol Soc Am 95:995–1010, 2005), modified by Assatourians and Atkinson (Bull Seismol Soc Am 97:935–1949, 2007), is used for generating the seismograms at low (0.1–1.0 Hz) and high frequencies (1.0–20.0 Hz), respectively. The results are validated by comparing the simulated peak acceleration, peak velocity, peak displacement, Arias intensity, the integral of velocity squared, Fourier spectrum and acceleration response spectrum on a frequency-by-frequency basis, the shape of the normalized integrals of acceleration and velocity squared, and the cross-correlation with the observed time-series data. Each characteristic is compared on a scale from 0 to 10, with 10 being perfect agreement. Also, the results are validated by comparing the simulated ground motions with the modified Mercalli intensity observations reported by reconnaissance teams and showed reasonable agreement. The results of the present study imply that the damage distribution pattern of the 1978 Tabas earthquake can be explained by the source directivity effect.

Keywords: Hybrid broadband simulation; Near field; Tabas earthquake; MMI observation; Discrete wavenumber method; Stochastic modeling technique (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2753-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2753-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-017-2753-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2753-2