EconPapers    
Economics at your fingertips  
 

Interpretation of slope displacement obtained from inclinometers and simulation of calibration tests

Ching-Jiang Jeng (), Yo-Yo Yo and Kai-Lan Zhong
Additional contact information
Ching-Jiang Jeng: Huafan University
Yo-Yo Yo: Huafan University
Kai-Lan Zhong: Huafan University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 87, issue 2, No 4, 623-657

Abstract: Abstract An inclinometer is a high-precision instrument used to detect displacement along sliding zones. From the time the inclinometer pipe is embedded to inclinometer calibration and to measured data collection and processing, many errors or misjudgments can occur that affect the measurement data. The most important objective for correctly using the observation results is the accurate interpretation of the horizontal displacement profiles obtained from the observation. This study combines existing inclusive data accumulated by a monitoring system on a test sloping site in a campus. It focuses on a comprehensive interpretation of the displacement relationships among different monitoring instruments. This study uses data interpretation principles, categorizes different mechanisms, and performs quantitative analysis and discussion in order to determine the significance presented by various types of monitored information in terms of slope sliding. In addition, in this study, stairwells in a campus building are used, an inclinometer is set up, and calibration equipment for the experiment is added in order to simulate various configurations and observe patterns for displacement curves. The examples for the various conditions include empty holes in the backfill around the pipe, connection points falling off, pipe torsion, relative sliding between layers reaching an extreme condition and leading to stuck pipes, multi-layered sliding, and different thicknesses in sliding zones. The experiment illustrates changes in behavior in terms of environmental factors. The results can be used for instrument calibration and measurement, and as a reference for disaster warning and prevention in hazardous areas with slopes.

Keywords: Inclinometer displacement; Calibration test simulation; Monitoring system; Slope sliding; Displacement mechanisms (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2786-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2786-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-017-2786-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2786-6