Dynamic relationship between functional stress and strain capacity of post-disaster infrastructure
Juyeong Choi (),
Abhijeet Deshmukh (),
Nader Naderpajouh () and
Makarand Hastak ()
Additional contact information
Juyeong Choi: Purdue University
Abhijeet Deshmukh: Purdue University
Nader Naderpajouh: Royal Melbourne Institute of Technology (RMIT University)
Makarand Hastak: Purdue University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 87, issue 2, No 13, 817-841
Abstract:
Abstract To mitigate the impact of natural or man-made hazards on the services of an infrastructure facility, it is important to quantitatively assess its available capacity. For example, in a post-disaster scenario, critical infrastructure is likely to experience (i) excessive demand for the service of an infrastructure and/or (ii) compromised capacity because of damage to the infrastructure and the failure of infrastructure interdependencies. As the demand grows and nears the capacity limit of an infrastructure facility, a shortage of services required for the community’s recovery will occur. The development of mitigation strategies and an assessment of their effectiveness require a systematic approach. In this paper, a functional stress–strain principle for infrastructure facilities is proposed to quantitatively assess their serviceability in post-disaster scenarios. Functional stress in infrastructure management represents a service-related demand on an infrastructure facility, while strain indicates its coping capacity. The dynamic nature of infrastructure services will be considered depending on the relationship between demand and available capacity. The allowable range of functional stress is then defined, considering plastic and elastic patterns of responses of a facility during recovery to explore strain capacity variations. The proposed principle facilitates a systematic understanding of how infrastructure facilities can adapt themselves to growing stress and the maximum level of stress they can handle. The application of the proposed functional stress–strain principle is demonstrated through case studies of two infrastructure facilities in a post-earthquake scenario: a medical facility and a power facility.
Keywords: Stress–strain diagram; Functional stress; Strain capacity; Capacity utilization rate; Serviceability; Infrastructure facility (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2795-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2795-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-2795-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().