EconPapers    
Economics at your fingertips  
 

Comparative assessment of water surface level using different discharge prediction models

Ernieza Suhana Mokhtar (), Biswajeet Pradhan (), Abd Halim Ghazali and Helmi Zulhaidi Mohd Shafri
Additional contact information
Ernieza Suhana Mokhtar: University Putra Malaysia
Biswajeet Pradhan: University Putra Malaysia
Abd Halim Ghazali: University Putra Malaysia (UPM)
Helmi Zulhaidi Mohd Shafri: University Putra Malaysia

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 87, issue 2, No 28, 1125-1146

Abstract: Abstract Discharge is traditionally measured at gauge stations located at discrete positions along the river course. When the volume of water discharge is higher than the river bank, inundation to adjacent land occurs. Flood inundation mapping has largely relied on in situ discharge data. However, it cannot be accessed at ungauged sites. In recent literature, no comparative study on the impact of water level using different discharge models has been carried out. This paper evaluates the performance of three empirical formulas for discharge measurement to model flood inundation along Padang Terap River in Kedah, Malaysia, between October 31, 2010 and November 4, 2010. Water discharge was computed using three models, and the Manning-n values were assigned to the types of land use. Further, the rainfall obtained from gauge stations was interpolated using the Kriging interpolation method. Relative error and RMSE methods were used to evaluate the measured and predicted water surface elevation. The impact of predicted water surface elevation (WSE) from different land use types and terrain information was assessed. Dingman and Sharma’s model significantly presented good agreement between measured and predicted WSE with R 2 = 0.8034, followed by Manning and Bjerklie equations with 0.8024 and 0.7997, respectively. Moreover, Dingman and Sharma’s model produced less RE and RMSE with 13.09% and 2.27 m compared with the others. Therefore, the estimated discharge can be used in ungauged sites for flood inundation modeling. Manning-n, elevation, and slope affected the WSE.

Keywords: Discharge; Water level; Flood; GIS; Remote sensing; Malaysia (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2812-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2812-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-017-2812-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2812-8