EconPapers    
Economics at your fingertips  
 

Comparison of TRMM-based flood indices for Gaziantep, Turkey

Senayi Dönmez () and Ahmet Emre Tekeli ()
Additional contact information
Senayi Dönmez: Çankırı Karatekin University
Ahmet Emre Tekeli: Çankırı Karatekin University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 88, issue 2, No 9, 834 pages

Abstract: Abstract Floods are the most common natural disasters threatening the welfare of humanity. Gaziantep, a city located in a semi-arid region of Turkey, is occasionally flooded, and in May 2014, a flood not only caused property damage, but also resulted in the death of a lady who became trapped in flood waters. The fatality and property damage of flash floods arise from the limited response time for remediation. Despite improvements in numerical weather predictions, forecasting flash floods is not easy. Due to its frequent observations, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) real-time (RT) 3B42RT data are tested for Gaziantep flood predictions in this study. During TRMM era, six floods occurred in Gaziantep. Three-hourly 3B42RT data covering the 2000- to 2014-year period indicated high rain rates during months in which floods were observed. Also daily variation of rainfall was well represented. High-intensity rain (HIR), cumulative distribution functions (CDF) and Gaziantep Flood Index (GAFI) indices are developed for flood characterization. HIR, calculated as 10 mm/h, detected October and December of 2010 floods. CDFs with 99, 98.5, 95 and 91.3% indicated 4 floods occurred in August 2005, June 2007, October 2010 and December 2010, respectively. GAFI was able to detect 4 out of 6 occurrences (August 2005, June 2007, October 2010 and December 2010) as values ranging from 1 to 2.63 are selected for monthly precipitation. In the missed occurrence, 3B42RT did not indicate any rainfall. Although only rain rates are used in flood characterization, the results are promising, and the simplicity of the methodology favors its usage. Also, methodology can easily be implemented to TRMM following missions such as Global Precipitation Measurement Mission.

Keywords: Satellite rainfall; TRMM; 3B42RT; Flash flood; Gaziantep; GPM (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2892-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2892-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-017-2892-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2892-5