Modeling debris flow initiation and run-out in recently burned areas using data-driven methods
Raquel Melo () and
José Luís Zêzere
Additional contact information
Raquel Melo: Universidade de Lisboa
José Luís Zêzere: Universidade de Lisboa
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 88, issue 3, No 5, 1373-1407
Abstract:
Abstract In the framework of the landslide susceptibility assessment, the maps produced should include not only the landslide initiation areas, but also those areas potentially affected by the traveling mobilized material. To achieve this purpose, the susceptibility analysis must be separated in two distinct components: (1) The first one, which is also the most discussed in the literature, deals with the susceptibility to failure, and (2) the second component refers to the run-out modeling using the initiation areas as an input. Therefore, in this research we present a debris flow susceptibility assessment in a recently burned area in a mountain zone in central Portugal. The modeling of debris flow initiation areas is performed using two statistical methods: a bivariate (information value) and a multivariate (logistic regression). The independent validation of the results generated areas under the receiver operating characteristic curves between 0.91 and 0.98. The slope angle, plan curvature, soil thickness and lithology proved to be the most relevant predisposing factors for the debris flow initiation in recently burned areas. The run-out is simulated by applying two different methods: the empirical model Flow Path Assessment of Gravitational Hazards at a Regional Scale (Flow-R) and the hydrological algorithm D-infinity downslope influence (DI). The run-out modeling of the 36 initiation areas included in the debris flow inventory delivered a true positive rate of 83.5% for Flow-R and 80.5% for DI, reflecting a good performance of both models. Finally, the susceptibility map for the entire basin including both the initiation and the run-out areas in a scenario of a recent wildfire was produced by combining the four models mentioned above.
Keywords: Debris flow; Initiation areas; Run-out; Data-driven methods; Burned areas (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2921-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:88:y:2017:i:3:d:10.1007_s11069-017-2921-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-2921-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().