Impact of the Darjeeling–Bhutan Himalayan front on rainfall hazard pattern
Paweł Prokop () and
Adam Walanus ()
Additional contact information
Paweł Prokop: Polish Academy of Sciences
Adam Walanus: AGH University of Science and Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 89, issue 1, No 19, 387-404
Abstract:
Abstract Multiscale interaction between monsoonal circulation and the local topography causes the southern front of the Darjeeling–Bhutan Himalaya to receive one of the highest annual rainfalls (3000–6000 mm) and most frequent heavy rains (up to 800 mm day−1) along the whole southern Himalayan margin. An examination of the patterns of annual rainfall, rainfall concentration, overland flow generation and slope instability indices in the Darjeeling–Bhutan Himalaya for 1986–2015 indicates that the mountain front disturbs rainfall gradient between the Bay of Bengal and the Tibetan Plateau. The results show that the precipitation concentration indices are lowest at the Himalayan front where the annual rainfall and the number of rainy days are highest. The Himalayan front has the highest predisposition to produce overland flow compared to adjacent foreland and the mountain interior. The average probability of the rainfall initialising the shallow landslides increases from 0.6% for a 1-day rainfall threshold of 144 mm to 6.1% for a 4-day rainfall threshold of 193 mm in the study area. The highest probability (up to 10%) of 2-day and longer low-intensity storms at the mountain front indicate that its area is threatened with particularly larger and deeper landslides. The multivariate regression analysis reveals statistically significant linear relationships of rainfall hazard indices with elevation and the distance to the mountain front in the mountain foreland and Himalaya, respectively. Regionally, the Darjeeling Himalaya reveals lower values of rainfall hazard indices, in comparison to the Bhutan Himalaya.
Keywords: Rainfall concentration; Overland flow; Landslides; Himalaya (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-2970-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:89:y:2017:i:1:d:10.1007_s11069-017-2970-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-2970-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().