Simulating storm surge waves for structural vulnerability estimation and flood hazard mapping
Adam Hatzikyriakou () and
Ning Lin ()
Additional contact information
Adam Hatzikyriakou: Princeton University
Ning Lin: Princeton University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2017, vol. 89, issue 2, No 23, 939-962
Abstract:
Abstract Wave action during storm surge is a common cause of building damage and therefore a critical consideration when estimating structural vulnerability and mapping flood risk. Traditional depth-damage curves, however, relate building vulnerability solely to inundation depth and therefore neglect an important damage mechanism. Similarly, flood mapping studies typically emphasize expected inundation rather than wave conditions. In this study, we consider the impact of wave effects on vulnerability estimation and flood mapping using a pair of hydrodynamic models (ADCIRC + SWAN and BOUSS1D) to simulate inland storm surge flooding. The models are used to simulate flooding in a heavily impacted coastal community (Ortley Beach, New Jersey) during Hurricane Sandy (2012) and to estimate inland hazard parameters characterizing inundation, wave and velocity effects. To quantify structural vulnerability, fragility curves are developed by statistically relating the simulated hazard parameters to surveyed building damage. The results indicate that dynamic hazard characteristics such as significant wave height are the dominant predictors of severe structural damage. The flood simulation is also used to map the variation of surge and wave effects in the community. Comparing this analysis to flood zones delineated by the Federal Emergency Management Agency in the community’s Flood Insurance Rate Map reveals severe wave action and building damage in a significant portion of the community deemed least exposed to flood impact. It is suspected that this misrepresentation of risk resulted from overconfidence in the performance of the community’s frontal dune under severe surge and wave actions.
Keywords: Storm surge; Structural vulnerability; Flood mapping; Waves; FEMA; FIRM (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-3001-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:89:y:2017:i:2:d:10.1007_s11069-017-3001-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-3001-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().