EconPapers    
Economics at your fingertips  
 

Probabilistic flood risk analysis considering morphological dynamics and dike failure

J. Oliver, X. S. Qin (), O. Larsen, M. Meadows and M. Fielding
Additional contact information
J. Oliver: Nanyang Technological University
X. S. Qin: Nanyang Technological University
O. Larsen: DHI Water & Environment (S) Pte. Ltd.
M. Meadows: DHI Water & Environment (S) Pte. Ltd.
M. Fielding: DHI Water & Environment (S) Pte. Ltd.

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 91, issue 1, No 14, 287-307

Abstract: Abstract A comprehensive flood risk assessment should aim not only at quantifying uncertainties but also the variability of risk over time. In this study, an efficient modelling framework was proposed to perform probabilistic hazard and risk analysis in dike-protected river systems accounting for morphological variability and uncertainty. The modelling framework combined the use of: (1) continuous synthetic discharge forcing, (2) a stochastic dike breach model dynamically coupled to a stochastic unsteady one-dimensional hydraulic model (MIKE1D) describing river flows, (3) a catalogue of pre-run probabilistic inundation maps (MIKE SHE) and (4) a damage and loss model (CAPRA). The methodology was applied using continuous simulations to a 45-km reach of the Upper Koshi River, Nepal, to investigate the changes in breach and flood hazards and subsequent risks after 2 and 5 years of probable river bed aggradation. The study results indicated an increase in annual average loss of 4% per year driven by changes in loss distribution in the most frequent loss return periods (20–500 years). The use of continuous simulations and dike breach model also provided a more robust estimation of risk metrics as compared to traditional binary treatment of flood defence and/or the direct association of flow with loss return periods. The results were helpful to illustrate the potential impacts of dynamic river morphology, dike failure and continuous simulation and their significance when devising flood risk study methodologies.

Keywords: Aggradation; Flood risk; Dike failure; MIKE1D; MIKE SHE (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-3126-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:91:y:2018:i:1:d:10.1007_s11069-017-3126-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-017-3126-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:91:y:2018:i:1:d:10.1007_s11069-017-3126-6