Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru river basin, Sri Lanka
Shuhei Yoshimoto () and
Giriraj Amarnath ()
Additional contact information
Shuhei Yoshimoto: International Water Management Institute (IWMI)
Giriraj Amarnath: International Water Management Institute (IWMI)
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 91, issue 2, No 4, 513 pages
Abstract:
Abstract Capturing inundation extent by floods is indispensable for decision making for mitigating hazard. Satellite images have commonly been used for flood mapping, but there are limitations such as unavailability due to satellite’s orbital period or cloud cover. Additionally, it would also be beneficial for policy makers to figure out the impact of water management measures such as water storage options on flood mitigation and irrigation water strengthening. Utilization of flood inundation models would support providing information for these demands. In this study, the rainfall–runoff inundation (RRI) model was applied in a flood-prone basin in eastern Sri Lanka, and its applicability was discussed. The RRI model was capable of simulating discharge and inundation extent during flood events, although it should be noted that the model had been calibrated targeting only the flooding period. Satellite-observed rainfall data corrected with a scale factor were able to be used as the model input to simulate long-term trends in runoff just as well as when gauged rainfall data were applied. The calibrated model was also capable of evaluating flood mitigation effects of existing and proposed water storage options by simulating discharge with and without flood capture operations. By reproducing long-term inflow to the storage facilities using satellite rainfall data, it was possible to determine that water would reach the maximum level of the proposed storage facilities even during low-rainfall years.
Keywords: Satellite data; Rainfall–runoff inundation model; Storage options; Flood mitigation; Sri Lanka (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-3143-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:91:y:2018:i:2:d:10.1007_s11069-017-3143-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-3143-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().