EconPapers    
Economics at your fingertips  
 

Tectonic and lithologic control over landslide activity within the Larji–Kullu Tectonic Window in the Higher Himalayas of India

Brijendra K. Mishra (), Dipanjan Bhattacharjee, Anupam Chattopadhyay and Ganesh Prusty
Additional contact information
Brijendra K. Mishra: University of Delhi
Dipanjan Bhattacharjee: Indira Gandhi National Tribal University
Anupam Chattopadhyay: University of Delhi
Ganesh Prusty: Defence Terrain Research Laboratory- DRDO

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 92, issue 2, No 6, 673-697

Abstract: Abstract The purpose of this study is to analyze and characterize recent landslide events in the Larji–Kullu Tectonic Window (LKTW), and to establish a relationship between the tectonic and lithologic characters of the terrain and the landslides activity. Using multispectral satellite image analysis with selected field investigation, a landslide occurrence database has been generated for the period between 1984 and 2015. To decipher the accelerated occurrences of landslides in the region, an integrated study is undertaken in the Kullu (also known as Kulu) valley of Beas River basin within the LKTW complex, to analyze the litho-structural and terrain slope interactions using morpho-tectonic parameters such as Topographic/Bedding Plane Interaction Angle (TOBIA) index, terrain surface roughness index and lithological competency analysis. A prominent clustering of landslides is observed in the north of Sainj River, contained within the tectonic window. Major sites of landslides are found to be located in the intensely fractured Manikaran Quartzite occurring within the core of the LKTW. The landslides are mostly associated with southern and southwestern-facing slopes and activations are pronounced in the ‘Orthoclinal’ slope class with gradient of 37°–48°. Thematic maps, e.g., geological, structural, geomorphological, slope and slope-aspect maps are generated and considered together to understand the morpho-tectonic scenario of the tectonic window. Observations from the above-stated thematic maps along with the occurrences of moderate magnitude earthquake epicenters helped to infer neotectonic movements along the Sainj River fault. Tectonic upliftment of the northern bank of the Sainj River along with increased precipitation through decades has resulted in recurrent landslides within the LKTW.

Keywords: Neotectonics; Sainj River fault; TOBIA index; Surface roughness; Lithologic competency; GIS (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3219-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3219-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-018-3219-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3219-x