EconPapers    
Economics at your fingertips  
 

Evaluation of a synthetic rainfall model, P-CLIPER, for use in coastal flood modeling

Kevin M. Geoghegan (), Patrick Fitzpatrick (), Randall L. Kolar () and Kendra M. Dresback ()
Additional contact information
Kevin M. Geoghegan: Northwest Hydraulic Consultants, Inc.
Patrick Fitzpatrick: Mississippi State University
Randall L. Kolar: University of Oklahoma
Kendra M. Dresback: University of Oklahoma

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 92, issue 2, No 7, 699-726

Abstract: Abstract With the projected increase in both tropical cyclone (TC) intensity and proportion of the global population living near the coast, adequate preparation to protect against TC flooding is in the economic interest of coastal cities worldwide. Numerical models that describe TC properties, e.g., storm surge and wind fields, are currently employed to simulate the component of flooding that results from seawater inundation of areas along the coast (i.e., saltwater flooding). However, without the inclusion of freshwater flooding, contributed by inland surface flow and direct precipitation, a total water level (TWL) system for TC flooding lacks a complete picture of the actual coastal flood levels. Working toward a true TWL system, this research investigates the efficacy of the simple and efficient parametric TC rainfall model P-CLIPER (PDF Precipitation-Climatology and Persistence) to provide historically representative TC rainfall to a TWL system. This research demonstrates the success of this novel use of P-CLIPER through calibration and validation to the Tar–Pamlico River and Neuse River coastal watershed in North Carolina. In particular, the comparison of hydrographs at observation stations shows that hydrologic model output forced with P-CLIPER matches that forced with radar-observed precipitation for both timing and peaks, with the proper parameter choices for P-CLIPER. Similarly with proper parameter selection, P-CLIPER captures the peak rate and spatial pattern of observed rainfall for Hurricane Isabel. Due to the model’s simplicity, this work also reveals that P-CLIPER can be used as a parametric rainfall model in ensemble simulations, which could lead toward improved floodplain mapping, emergency management decisions, and stormwater infrastructure planning.

Keywords: Synthetic rainfall model; Rainfall accumulation; Hydrology; Total water level; Tropical cyclones (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3220-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3220-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-018-3220-4

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3220-4