Spatial distribution patterns of global natural disasters based on biclustering
Shi Shen,
Changxiu Cheng (),
Changqing Song,
Jing Yang,
Shanli Yang,
Kai Su,
Lihua Yuan and
Xiaoqiang Chen
Additional contact information
Shi Shen: Beijing Normal University
Changxiu Cheng: Beijing Normal University
Changqing Song: Beijing Normal University
Jing Yang: Beijing Normal University
Shanli Yang: Beijing Normal University
Kai Su: Beijing Normal University
Lihua Yuan: Beijing Normal University
Xiaoqiang Chen: Beijing Normal University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 92, issue 3, No 26, 1809-1820
Abstract:
Abstract Understanding the spatial distribution patterns (SDPs) of natural disasters plays an essential role in reducing and minimizing natural disaster risks. An integrated discussion on the SDPs of multiple global disasters is still lacking. In addition, due to their high quantity and complexity, natural disasters constitute high-dimensional data that represent a challenge for an analysis of SDPs. This paper analyzed the SDPs of global disasters from 1980 to 2016 through biclustering. The results indicate that the SDPs of fatality rates are more uneven than those of occurrence rates. Based on the occurrence rates, the selected countries were clustered into four classes. (1) The major disasters along the northern Pacific and in the Caribbean Sea and Madagascar are storms, followed by floods. (2) Most of Africa is mainly affected by floods, epidemics, and droughts. (3) The primary disaster types in the Alpine-Himalayan belt and the western Andes are floods and earthquakes. (4) Europe, America, Oceania, and South and Southeast Asia are predominantly influenced by floods. In addition, according to the fatality rates, the selected countries were clustered into eight classes. (1) Extreme high temperatures mostly result in high fatality rates (HFRs) in developed countries. (2) Epidemics lead to HFRs in parts of Africa. (3) Droughts produce HFRs in East Africa. (4) Earthquakes result in HFRs along the eastern Pacific coastline and the Alpine-Himalayan belt. (5) Tsunamis mainly cause HFRs in Thailand, Indonesia, and Japan. (6) Storms result in scattered but distinct HFRs along the coastal regions of the Pacific and Indian Oceans. (7) Floods cause concentrated HFRs in South Asia and northeastern South America. (8) Finally, volcanoes cause HFRs in Colombia, while extreme low temperatures cause HFRs in Ukraine and Poland.
Keywords: Natural disasters; Biclustering; Spatial distribution; Multiple disasters (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3279-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3279-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-018-3279-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().