Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta
Pawan Kumar Rai (),
C. T. Dhanya and
B. R. Chahar
Additional contact information
Pawan Kumar Rai: Indian Institute of Technology Delhi
C. T. Dhanya: Indian Institute of Technology Delhi
B. R. Chahar: Indian Institute of Technology Delhi
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 92, issue 3, No 27, 1840 pages
Abstract:
Abstract River flooding has been causing extensive losses to life and property, which is a serious concern worldwide. To minimize these losses, suitable planning and management practices are required for the floodplain mapping. Flash floods occur almost every year in the deltaic region of Brahmani and Baitarani river basins in India, during the monsoon season. Generally, 1D modelling is considered as a regular practice. But nowadays, model formulations include 1D for the representation of river channels and 2D for representing river floodplains. In the absence of uniform observations, a hybrid model (1D–2D coupled model) has been developed for this deltaic region to identify the extent of inundation and its depth during the flooding, since 1D models alone do not provide detailed information of flooding. Thus, a well-known 2D river hydrodynamic model iRIC was externally coupled with 1D (SWAT and SWMM) models to simulate and visualize flood scenarios and to identify the flood-prone areas. The hydrological model SWAT was calibrated and validated for Brahmani river deltaic basin, with the observed discharge data available. However for Baitarani river basin, observed flow data were missing and only gauge data were available at few monitoring stations. Hence, for Baitarani river basin, the SWMM model was developed and calibrated with the help of Monte Carlo method. Finally, the SWAT- and SWMM-based tributary stream flow outputs were fed together into the iRIC hydrodynamic model as input for flood inundation mapping. The discharge and water gauge data were used for the calibration and validation. The results obtained from the coupled model were found to be in good agreement with the observed data (RMSE value is 0.77 and 0.79 during calibration and validation, respectively), which enabled identification of the flood-prone areas. The developed model may be used as a tool for effective planning and management of natural disasters such as flash floods.
Keywords: River flood; Hydrodynamic model; Inundation mapping; iRIC; SWAT; SWMM; SWAT-CUP (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3281-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3281-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-018-3281-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().