A GIS-based analysis of constraints on pedestrian tsunami evacuation routes: Cascais case study (Portugal)
André Trindade (),
Paula Teves-Costa and
Cristina Catita
Additional contact information
André Trindade: CERU – European Centre on Urban Risks
Paula Teves-Costa: CERU – European Centre on Urban Risks
Cristina Catita: Universidade de Lisboa
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 93, issue 1, No 11, 169-185
Abstract:
Abstract Tsunami hazard in coastal areas susceptible to flooding, although reduced (in terms of probability of occurrence), may pose a high risk. Therefore, in these areas, a detailed evacuation planning of the affected population is required as a risk mitigation measure. The knowledge and enforcement of evacuation routes may reduce the population vulnerability, making it more resilient and reducing risk. This paper presents a GIS approach for modelling evacuation routes based on the optimal path search problem, of the graph theory, which is implemented on ArcCasper tool. The methodology proposed considers the elements involved in the evacuation process, the worst credible tsunami inundation scenario (hazard extent and travel time), the number of people that needs to be evacuated in different time scenarios, the safe areas or destination points of the evacuation routes, the roads network characteristics and finally the time available to evacuate. The knowledge of those elements allows predicting some possible outcomes of the evacuation, such as the arrival time of the evacuees to a shelter and the identification of congestion hot spots resulting from the application of a flocking model which simulates the path to be used by evacuees avoiding obstacles. The municipality of Cascais was used to test the methodology proposed in this study. Cascais is one of the largest urban centres located about 25 km west of Lisbon, Portugal, with a high density of infrastructure along the coastline whereby most of the population and economic activities are exposed to a tsunami. The results, presented in the form of maps, allow identifying the optimal evacuation routes as well as the unfeasible routes. This crucial information could be used to the evacuation optimization regarding the location of meeting points and vertical shelters as well as to improve the accessibility of the areas to be evacuated.
Keywords: Tsunami; Evacuation routes; Flocking maps; Network analysis; Cascais (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-017-3152-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:93:y:2018:i:1:d:10.1007_s11069-017-3152-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-017-3152-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().