Tropical storm Chedza and associated floods over south-eastern Africa
Ramontsheng S. Rapolaki () and
Chris J. C. Reason ()
Additional contact information
Ramontsheng S. Rapolaki: University of Cape Town
Chris J. C. Reason: University of Cape Town
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 93, issue 1, No 9, 189-217
Abstract:
Abstract Widespread flooding over parts of Malawi, Mozambique, and Madagascar occurred in January 2015. An impact assessment by the World Bank indicated huge damage to property, infrastructure, and agriculture over several regions in south-eastern Africa as well as significant loss of life. The flooding was associated with tropical storm Chedza that developed in the Mozambique Channel on 11 January 2015. This study investigates the atmospheric circulation and potential mechanisms responsible for the heavy rainfall event that occurred between 11 and 17 January over Mozambique and Malawi using the Weather Research and Forecasting (WRF) model, the Global Forecast System atmospheric reanalysis, satellite-derived rainfall and wind data, and station rainfall data. Tropical Rainfall Measuring Mission rainfall estimates and rainfall station data indicated that southern Malawi and northern Mozambique experienced the majority of rainfall during the early stages of tropical storm Chedza, while Madagascar experienced heavy falls when tropical storm Chedza tracked over the island on 17 January 2015. Furthermore, an analysis of the station data revealed that the heavy rainfall over Mozambique occurred between 11 and 13 January with some stations recording about 80% of their total January 2015 rainfall as resulting from this event. The WRF simulation of the event indicated a low-level easterly to south-easterly onshore flow over southern Mozambique that interacted with a north-westerly monsoonal flow along the northern flanks (periphery) of the storm in the northern Mozambique Channel that led to moisture flux convergence in the regions of heavy rainfall. Furthermore, moisture from the south-west Indian Ocean was advected into the region during the heavy rainfall. This moisture convergence along with strong uplift and convective instability over the region acted together to create favourable conditions for the development of tropical storm Chedza and the associated heavy rainfall.
Keywords: Tropical storm; Floods; Atmospheric modelling; South-eastern Africa (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3295-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:93:y:2018:i:1:d:10.1007_s11069-018-3295-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-018-3295-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().