EconPapers    
Economics at your fingertips  
 

Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy)

Lorenzo Sangelantoni (), Eleonora Gioia and Fausto Marincioni
Additional contact information
Lorenzo Sangelantoni: CETEMPS, Università dell’Aquila
Eleonora Gioia: Università Politecnica delle Marche
Fausto Marincioni: Università Politecnica delle Marche

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 93, issue 2, No 14, 849-884

Abstract: Abstract Researchers have long attempted to determine the amount of rainfall needed to trigger slope failures, yet relatively little progress has been reported on the effects of climate change on landslide initiation. Indeed, some relationships between landslides and climate change have been highlighted, but sign and magnitude of this correlation remain uncertain and influenced by the spatial and temporal horizon considered. This work makes use of statistically adjusted high-resolution regional climate model simulations, to study the expected changes of landslides frequency in the eastern Esino river basin (Central Italy). Simulated rainfall was used in comparison with rainfall thresholds for landslide occurrence derived by two observation-based statistical models (1) the cumulative event rainfall–rainfall duration model, and (2) the Bayesian probabilistic model. Results show an overall increase in projected landslide occurrence over the twenty-first century. This is especially confirmed in the high-emission scenario representative concentration pathway 8.5, where according to the first model, the events above rainfall thresholds frequency shift from ~ 0.025 to ~ 0.05 in the mountainous sector of the study area. Moreover, Bayesian analysis revealed the possible occurrence of landslide-triggering rainfall with a magnitude never occurred over the historical period. Landslides frequency change signal presents also considerable seasonal patterns, with summer displaying the steepest positive trend coupled to the highest inter-model spread. The methodological chain here proposed aims at representing a flexible tool for future landslide-hazard assessment, applicable over different areas and time horizons (e.g., short-term climate projections or seasonal forecasts).

Keywords: Regional climate models; Regional climate change impacts; Rainfall thresholds for landslide occurrence; Landslide statistical modeling; Climate simulations bias correction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3328-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3328-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-018-3328-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3328-6