Tropical cyclone: expressions for velocity components and stability parameter
Indrajit Ghosh () and
Nabajit Chakravarty ()
Additional contact information
Indrajit Ghosh: College of Engineering and Management Kolaghat
Nabajit Chakravarty: Meteorological Office, Imphal, New ATS Building, Imphal International Airport
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2018, vol. 94, issue 3, No 16, 1293-1304
Abstract:
Abstract Tropical cyclones are the most devastating natural calamity forming in the ocean bed and die out in land. The life cycle of a tropical cyclone is mainly classified into four stages: (a) formation or genesis stage, (b) intensification stage, (c) mature stage and (d) decay stage. The intensification and mature stages are also known as tropical storm and cyclone (hurricane) stage, respectively. To develop the model of tropical cyclone we have taken the momentum conservation equation, equation of continuity and equation of hydrostatic balance in cylindrical coordinate system. Also the equation of state and the equation relating the velocity component and stream function are taken into account. We have assumed a suitable analytic form of the radial component of velocity as a function of radial distance (r) from the axis of the cyclone and vertical distance (z) from the sea bed. So in our model we have taken a cyclone as a rotating cylinder. With the use of the expression of the radial component velocity we have solved the governing nonlinear equation in the cylindrical coordinate system of a cyclone using ‘Wentzel–Kramers–Brillouin approximation’ and estimated the transverse velocity on the sea bed and in the vicinity of the eye wall of the cyclone. From the results we also get a path to generalize the tropical cyclone model as a vortex which is a generating curve of a cyclone. We also determine the vertical component of velocity of the cyclone. In this work we define a new parameter called the cyclone stability parameter (CSP). The CSP helps to determine the stability of a tropical cyclone from its genesis.
Keywords: Tropical cyclone; Analytic model; Radial velocity; Nonlinear; Transverse velocity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3477-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3477-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-018-3477-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().