Synergistic effects of environmental regulations on carbon productivity growth in China’s major industrial sectors
Ge Gao,
Ke Wang,
Chi Zhang and
Yi-Ming Wei
Additional contact information
Ge Gao: Beijing Institute of Technology
Chi Zhang: Royal Institute of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 95, issue 1, No 5, 55-72
Abstract:
Abstract It is crucial that the implementation of environmental regulations have a positive synergistic effect on carbon productivity growth (i.e., environmentally adjusted productivity growth with the consideration of carbon emissions) for China to realize its sustainable development goals because the country is currently under tripartite pressures of economic growth, carbon emissions control, and environmental pollution reduction. This paper investigates the impact of changes in environmental regulation stringency on industrial-level carbon productivity growth in China. Through utilizing the information entropy method, a new index of environmental regulation stringency is established by taking into account the effects of both pollution reduction consequences and pollution reduction measures. In addition, based on the data envelopment analysis method, a Malmquist carbon productivity index is proposed to estimate the industrial carbon productivity growth of 21 major industrial sectors in China’s 30 provinces over 2004–2014. Finally, an econometric regression model is applied to test the synergistic effects of environmental regulations on carbon productivity in China’s major industrial sectors. The results show that (1) a stringent environmental regulation is associated with an increase in overall industrial carbon productivity growth in China; (2) there exist significant pass-through effects in China’s major industrial sectors that technology can transmit effectively from leader to follower; (3) there also exist obvious follow-up effects in China’s major industrial sectors, i.e., the industrial sectors that have larger technological gaps with the leaders catch up faster than others; and (4) the environmental regulations have different effects on industrial sectors with different polluting levels, i.e., there is a positive linear relationship between environmental regulation stringency and industrial-level carbon productivity growth in low-polluting industrial sectors, a parabolic nonlinear relationship between them in high-polluting industrial sectors, and an inverted U-shaped relationship between them in moderate-polluting industrial sectors.
Keywords: China’s industrial sector; Environmental regulation; Industrial heterogeneity; Pollution intensity; Total factor carbon productivity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3446-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
Working Paper: Synergistic Effects of Environmental Regulations on Carbon Productivity Growth in China's Major Industrial Sectors (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:95:y:2019:i:1:d:10.1007_s11069-018-3446-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-018-3446-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().