Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data
Francesco Marra ()
Additional contact information
Francesco Marra: Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 95, issue 3, No 23, 883-890
Abstract:
Abstract Rainfall thresholds for landslides occurrence derived in real applications tend to be lower than the ones one would obtain using exact data. This letter shows how the use of coarse temporal resolution rainfall data causes a systematic overestimation of the duration of the triggering rainfall events that directly contributes to thresholds underestimation. A numerical experiment is devised to quantify this systematic effect for the relevant case of power-law depth/intensity–duration thresholds. In the examined conditions, i.e., the frequentist method at 5% non-exceedance probability level, ~ 70% underestimation of the scale parameter and ~ 60% overestimation of the shape parameter of the thresholds is to be expected using daily resolution rainfall data, but the exact quantification depends on the specific characteristics of each study case. The underestimation increases as the temporal resolution becomes larger than the expected minimal duration of the triggering events. Under operational conditions, sensitivity analyses based on the methods and datasets of interest are advised.
Keywords: Landslides; Early warning; Rainfall thresholds; Systematic underestimation (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3508-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:95:y:2019:i:3:d:10.1007_s11069-018-3508-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-018-3508-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().