Seismic hazard at a triple plate junction: the state of Chiapas (México)
A. G. Rodríguez-Lomelí and
J. García-Mayordomo ()
Additional contact information
A. G. Rodríguez-Lomelí: Universidad Complutense de Madrid
J. García-Mayordomo: Instituto Geológico y Minero de España
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 97, issue 3, No 17, 1297-1325
Abstract:
Abstract The state of Chiapas (SE México) conforms a territory of complex tectonics and high seismic activity. The interaction among the Cocos, North American and Caribbean tectonic plates, as well as the active crustal deformation inside Chiapas, determines a variety of seismogenic sources of distinct characteristics and particular strong ground motion attenuation. This situation makes the assessment of seismic hazard in the region a challenging task. In this work, we follow the methodology of probabilistic seismic hazard analysis, starting from the compilation of an earthquake catalogue, and the definition of seismogenic source-zones based on the particular seismotectonics of the region: plate-subduction-related sources (interface and intraslab zones), active crustal deformation zones and the shear zone between the North American and Caribbean plates formed by the Motagua, Polochic and Ixcán faults. The latter source is modelled in two different configurations: one single source-zone and three distinct ones. We select three ground motion prediction equations (GMPEs) recommended for South and Central America, plus two Mexican ones. We combine the GMPEs with the source-zone models in a logic tree scheme and produce hazard maps in terms of peak ground acceleration and spectral acceleration for the 500-, 1000- and 2500-year return periods, as well as uniform hazard spectra for the towns of Tuxtla Gutiérrez, Tapachula and San Cristóbal. We obtain higher values in comparison with previous seismic hazard studies and particularly much higher than the output of the Prodisis v.2.3 software for seismic design in México. Our results are consistent with those of neighbouring Guatemala obtained in a recent study for Central America.
Keywords: Earthquake hazard; Seismogenic source-zones; Interface; Intraslab; PSHA; Chiapas (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03710-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:97:y:2019:i:3:d:10.1007_s11069-019-03710-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-019-03710-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().