Experimental study on the influence of vegetation on the slope flow concentration time
Qinge Peng (),
Xingnian Liu,
Er Huang and
Kejun Yang
Additional contact information
Qinge Peng: State Key Laboratory of Hydraulics and Mountain River Engineering
Xingnian Liu: State Key Laboratory of Hydraulics and Mountain River Engineering
Er Huang: State Key Laboratory of Hydraulics and Mountain River Engineering
Kejun Yang: State Key Laboratory of Hydraulics and Mountain River Engineering
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 98, issue 2, No 19, 763 pages
Abstract:
Abstract Due to the steep slope of mountainous watersheds and large changes in vegetation coverage degree, flood response processes after rainstorms are complicated. The flow concentration time of the slope is a key parameter for the simulation of flood processes. The most widely used flow concentration time formula currently in the distributed hydrological model is T = L0.6n0.6i−0.4S−0.3, which is derived from the kinematic wave theory (Melesse and Graham in J Am Water Resour As 40(4):863–879, 2004; Lee in Hydrol Sci 53(2):323–337, 2008). The flow confluence time T is characterized by the constant exponent of the slope length L, roughness n, effective rainfall intensity i and slope S, and the influence of vegetation on the flow concentration time is implied by the roughness. In this study, a series of heavy rainfall slope surface confluence tests under different slopes and vegetation coverage were carried out, a vegetation coverage factor, C, which was introduced, a statistical analysis method was used, and the vegetation coverage index was fitted. The results showed that the types of vegetation have a certain influence on the flow concentration time of slope, and the flow confluence time under turf vegetation was larger than the flow confluence time under shrubs vegetation; especially in the slope of the larger slope, the relative impact is more significant; at the same time, the influence of vegetation coverage on the flow concentration time of slope was more significant; no matter the condition of turf or shrub, the slope confluence time increased obviously with the increase in vegetation coverage. The index of vegetation coverage factor C varied with the slope and rain intensity. In general, the index of vegetation coverage factor C increased with the decrease in slope and decreased with the increase in rain intensity. In regard to the turf vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change. In regard to the shrubs vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change.
Keywords: Vegetation type; Vegetation coverage; Vegetation coverage index; Flow concentration time; Artificial rainfall (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03728-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:98:y:2019:i:2:d:10.1007_s11069-019-03728-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-019-03728-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().