EconPapers    
Economics at your fingertips  
 

Land use change increases flood hazard: a multi-modelling approach to assess change in flood characteristics driven by socio-economic land use change scenarios

Jean Hounkpè (), Bernd Diekkrüger (), Abel A. Afouda () and Luc Olivier Crepin Sintondji ()
Additional contact information
Jean Hounkpè: University of Abomey-Calavi
Bernd Diekkrüger: University of Bonn
Abel A. Afouda: University of Abomey-Calavi
Luc Olivier Crepin Sintondji: University of Abomey-Calavi

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 98, issue 3, No 10, 1050 pages

Abstract: Abstract We analysed in the work how change in land use/land cover influences on flood characteristics (frequency and magnitude) using a model inter-comparison approach, statistical methods and two land use scenarios (land use scenario A and land use scenario B) for three time horizons. The derived land use maps from these scenarios were considered as forcing inputs to two physically based hydrological models (SWAT and WaSiM). The generalized Pareto distribution combined with the Poisson distribution was used to compute flood frequency and magnitude. Under land use scenario A, croplands increase at the annual rate of 0.7% while under land use scenario B, it increases by 1.13% between 2003 and 2029. The expansion of croplands indubitably enhances flood risks. Although there was a general agreement about the sense of the variation, the magnitude of change in flood characteristics was highly influenced by the model type. The rate of increase in flood quantiles simulated from SWAT (0.36–1.3% for 10-year flood) was smaller than the corresponding magnitude of changes simulated from WaSiM (2.6–7.0% for 10-year flood) whatever the scenarios. The expansion of agricultural and pasture lands at the yearly rate of 0.7% under land use scenario A (respectively, 1.13% under land use scenario B) leads to an increase of 3.6% (respectively, 5.4%) in 10-year flood by considering WaSiM. This study is among the first of its kind to establish a strong statistical relation between flood severity/frequency and agricultural land expansion and natural vegetation reduction. The results of this study are relevant and useful to the scientific research community as well as the decision makers for framing appropriate policy decisions towards the management of extreme events and the land use planning/management in future in the region.

Keywords: Flood events; Multi-modelling; Statistical analysis; Zou catchment; West Africa (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-018-3557-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:98:y:2019:i:3:d:10.1007_s11069-018-3557-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-018-3557-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:98:y:2019:i:3:d:10.1007_s11069-018-3557-8