EconPapers    
Economics at your fingertips  
 

Diagnosis of historical inundation events in the Marshall Islands to assist early warning systems

Grant Smith () and Nover Juria
Additional contact information
Grant Smith: Bureau of Meteorology
Nover Juria: National Weather Service

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2019, vol. 99, issue 1, No 9, 189-216

Abstract: Abstract Inhabitants of low-lying coral atolls benefit from disaster risk reduction decision makers receiving early warnings of coastal inundation leading to heightened levels of alert and preparedness. Majuro, the capital of the Marshall Islands, is a coral atoll that experiences coastal inundation events on a near annual frequency and is likely to be exacerbated by sea-level rise, increasing the importance of early warning systems. However, current early warnings are not always provided for every inundation event. Inundation is driven by a combination of various oceanographic processes that contribute to sea level at the coastline, with the primary driver dependent on how extreme a particular process may be at the time. Incoming swell from distant storms and cyclones can trigger an inundation event, especially when coinciding with high spring tides and/or sea-level anomalies. Historical data from three directional scenarios were analysed to determine the critical values for offshore wave height, peak period, directional range, and sea level that had led to inundation in the past. Bulk wave statistics and static sea level were found to be sufficient information to identify the occurrence of an inundation event. These inundation thresholds serve as a reference to be used in conjunction with forecast models as an analogue for future events informing both the likelihood and impact. The analysis showed that inundation with a significant contributing swell factor propagates via three main routes, with approximately 50% occurring from the north-east. The two highest sea-level measurements on record both occurred during La Niña events, with both leading to inundation, suggesting that spring tides during La Niña events should exhibit a heightened level of alert for inundation at Majuro regardless of swell contribution.

Keywords: Coastal inundation; Pacific islands; Swell waves; Sea level (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-019-03735-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:99:y:2019:i:1:d:10.1007_s11069-019-03735-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-019-03735-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:99:y:2019:i:1:d:10.1007_s11069-019-03735-9