A fuzzy asymmetric TOPSIS model for optimizing investment in online advertising campaigns
Francisco-Javier Arroyo-Cañada () and
Jaime Gil-Lafuente
Additional contact information
Francisco-Javier Arroyo-Cañada: University of Barcelona
Jaime Gil-Lafuente: University of Barcelona
Operational Research, 2019, vol. 19, issue 3, No 6, 716 pages
Abstract:
Abstract The high penetration of the Internet and e-commerce in Spain during recent years has increased companies’ interest in this medium for advertising planning. In this context Google offers a great advertising inventory and perfectly segmented content pages. This work is concerned with the optimization of online advertising investments based on pay-per-click campaigns. Our main goal is to rank and select different alternative keyword sets aimed at maximizing the awareness of and traffic to a company’s website. The keyword selection problem with online advertising purposes is clearly a multiple-criteria decision-making problem additionally characterized by the imprecise, ambiguous and uncertain nature of the available data. To address this problem, we propose a technique for order of preference by similarity to ideal solution (TOPSIS)-based approach, which allows us to rank the alternative keyword sets, taking into account the fuzzy nature of the available data. The TOPSIS is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the longest distance from the negative ideal solution. In this work, due to the characteristics of the studied problem, we propose the use of an asymmetric distance, allowing us to work with ideal solutions that differ from the maximum or the minimum. The suitability of the proposed model is illustrated with an empirical case of a stock exchange broker’s advertising investment problem aimed at generating awareness about the brand and increasing the traffic to the corporative website.
Keywords: Fuzzy; Multiple-criteria decision making; Online advertising; Stock exchange broker; TOPSIS (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12351-017-0368-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:19:y:2019:i:3:d:10.1007_s12351-017-0368-8
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-017-0368-8
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().