EconPapers    
Economics at your fingertips  
 

A fuzzy cognitive map based on Nash bargaining game for supplier selection problem: a case study on auto parts industry

Mohsen Abbaspour Onari and Mustafa Jahangoshai Rezaee ()
Additional contact information
Mohsen Abbaspour Onari: Urmia University of Technology
Mustafa Jahangoshai Rezaee: Urmia University of Technology

Operational Research, 2022, vol. 22, issue 3, No 17, 2133-2171

Abstract: Abstract Supplier Selection (SS) is a critical issue due to intense competition in the current market and the need to provide customer necessities with acceptable quality. On the other hand, SS depends on various criteria that make it a Multi-Criteria Decision-Making problem. Hence, a novel framework has been proposed in the current study to evaluate and rank suppliers. The proposed framework by aggregating the Process Control Score (PCS) and Process Evaluation Score (PES) evaluate and rank suppliers. For calculating PCS, a new structure and logic of the Fuzzy Cognitive Map based on the Nash Bargaining Game (BG-FCM) has been proposed to solve FCM’s shortcoming in distinguishing between the important concepts in the real world. Moreover, for generating solutions with high separability and helping decision-makers to have a precise analysis of the system, a modified learning algorithm based on the Particle Swarm Optimization (PSO) and S-shaped transfer function (PSO-STF) has been utilized for training BG-FCM. For calculating PES, experimental mathematical equations in the inspected case have been utilized for important criteria of quality, delivery time, and price of the shipment. The proposed framework has been applied in an auto parts industry for validation. The results show that BG-FCM can successfully highlight the most important concepts and assign their original value. Also, PSO-STF in the comparison between other conventional FCMs’ learning algorithms has better performance in generating solutions with high separability. It can be concluded that BN-FCM with more progressive intelligence can analyze the complex systems and help decision-makers to have a vivid insight into the system.

Keywords: Supplier selection framework; Fuzzy cognitive map; Nash bargaining game; Particle swarm optimization; S-shaped transfer function; Auto parts industry (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12351-020-00606-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-020-00606-1

Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351

DOI: 10.1007/s12351-020-00606-1

Access Statistics for this article

Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis

More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-020-00606-1