Hesitant intuitionistic fuzzy algorithm for multiobjective optimization problem
Shailendra Kumar Bharati ()
Additional contact information
Shailendra Kumar Bharati: Government Polytechnic Chunar
Operational Research, 2022, vol. 22, issue 4, No 12, 3547 pages
Abstract:
Abstract Every real-life optimization problem with uncertainty and hesitation can not be with a single objective, and consequently, a class of multiobjective linear optimization problems (MOLOP) appears in the literature. Further, the experts assign values of uncertain parameters, and the expert’s opinions about the parameters are conflicting in nature. There are concerning methods based on fuzzy sets, or their other versions are available in the literature that only covers partial uncertainty and hesitation, but the hesitant intuitionistic fuzzy sets provides a collective understanding of the real-life MOLOP under uncertainty and hesitation, and it also reflects better practical aspects of decision-making of MOLOP. In this context, the paper defines the hesitant fuzzy membership function and nonmembership function to tackle the uncertainty and hesitation of the parameters. Here, a new solution called hesitant intuitionistic fuzzy Pareto optimal solution is defined, and some theorems are stated and proved. For the decision-making of MOLOP, we develop an iterative method, and an illustrative example shows the superiority of the proposed method. And lastly, the calculated results are compared with some popular methods.
Keywords: Hesitant fuzzy sets; Intuitionistic fuzzy sets; Fuzzy sets; Optimization problems; Uncertainty and Hesitation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s12351-021-00685-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00685-8
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-021-00685-8
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().