Probing the Pareto front of a large-scale multiobjective problem with a MIP solver
I. Kaliszewski and
J. Miroforidis ()
Additional contact information
I. Kaliszewski: Systems Research Institute, Polish Academy of Sciences
J. Miroforidis: Systems Research Institute, Polish Academy of Sciences
Operational Research, 2022, vol. 22, issue 5, No 29, 5617-5673
Abstract:
Abstract The rapid growth of computing power and the development of highly effective optimization solvers build the appetite for solving increasingly extensive problems. However, despite all these efforts, resource constraints (time, memory) often strike back. The ”curse of dimensionality” haunts primarily combinatorial problems, but not only. The issue is even more acute in multiobjective optimization, where several Pareto optimal solutions have to be derived. In our earlier works, we developed a general methodology for multiobjective optimization that allows representing the outcome of a Pareto optimal solution by a hyperrectangle. The sides of the hyperrectangle are defined by lower and upper bounds on the outcome components, i.e., intervals of possible objective function values. Such a representation makes sense if the Pareto optimal solution cannot be derived with the available computation resources. Beyond the research interest, to be of practical value, methodologies of that kind have to be computationally effective and scalable. In this work, we show that our methodology can be effectively coupled with any MIP optimization solver. With that, as long as an analyst is willing to accept a (sufficiently tight) interval representation of the Pareto optimal solution outcome instead of its exact outcome, our methodology scales multiobjective-based analyses well beyond the reach of the MIP solver itself. We operationalize our methodology in the form of a workflow (we nicknamed it Crescent Workflow). We illustrate the workflow working on several large-scale instances of the multiobjective multidimensional 0–1 knapsack problem with three objectives.
Keywords: Multiobjective optimization; Large-scale optimization; Scalability; Budget constrained computing; Pareto optimality; Chebyshev scalarization; Two-sided Pareto front approximations; Multiobjective multidimensional 0–1 knapsack problem (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12351-022-00708-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00708-y
Ordering information: This journal article can be ordered from
https://www.springer ... search/journal/12351
DOI: 10.1007/s12351-022-00708-y
Access Statistics for this article
Operational Research is currently edited by Nikolaos F. Matsatsinis, John Psarras and Constantin Zopounidis
More articles in Operational Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().