Multi-period descriptive sampling for scenario generation applied to the stochastic capacitated lot-sizing problem
Hartmut Stadtler () and
Nikolai Heinrichs ()
Additional contact information
Hartmut Stadtler: University of Hamburg
Nikolai Heinrichs: University of Hamburg
OR Spectrum: Quantitative Approaches in Management, 2024, vol. 46, issue 3, No 1, 639-668
Abstract:
Abstract Using scenarios to model a stochastic system’s behavior poses a dilemma. While a large(r) set of scenarios usually improves the model’s accuracy, it also causes drastic increases in the model’s size and the computational effort required. Multi-period descriptive sampling (MPDS) is a new way to generate a small(er) set of scenarios that yield a good fit both to the periods’ probability distributions and to the convoluted probability distributions of stochastic variables (e.g., period demands) over time. MPDS uses descriptive sampling to draw a sample of S representative random numbers from a period’s known (demand) distribution. Now, to create a set of S representative scenarios, MPDS heuristically combines these random numbers (period demands) period by period so that a good fit is achieved to the convoluted (demand) distributions up to any period in the planning interval. A further contribution of this paper is an (accuracy) improvement heuristic, called fine-tuning, executed once the fix-and-optimize (FO) heuristic to solve a scenario-based mixed integer programming model has been completed. Fine-tuning uses linear programming (LP) with fixed binary variables (e.g., setup decisions) generated by FO and iteratively adapts production quantities so that compliance with given expected service level constraints is reached. The LP is solved with relatively little computational effort, even for large(r) sets of scenarios. We show the advancements possible with MPDS and fine-tuning by solving numerous test instances of the stochastic capacitated lot-sizing problem under a static uncertainty approach.
Keywords: Scenario generation; Stochastic lot-sizing; Service level constraints; Sample average approximation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00291-023-00743-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-023-00743-x
Ordering information: This journal article can be ordered from
http://www.springer. ... research/journal/291
DOI: 10.1007/s00291-023-00743-x
Access Statistics for this article
OR Spectrum: Quantitative Approaches in Management is currently edited by Rainer Kolisch
More articles in OR Spectrum: Quantitative Approaches in Management from Springer, Gesellschaft für Operations Research e.V.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().