Recurrent double-conditional factor model
Christian Fieberg (),
Gerrit Liedtke () and
Thorsten Poddig ()
Additional contact information
Christian Fieberg: HSB Hochschule Bremen - City University of Applied Sciences
Gerrit Liedtke: University of Bremen
Thorsten Poddig: University of Bremen
OR Spectrum: Quantitative Approaches in Management, 2025, vol. 47, issue 1, No 7, 205-254
Abstract:
Abstract In economic applications, the behavior of objects (e.g., individuals, firms, or households) is often modeled as a function of microeconomic and/or macroeconomic conditions. While macroeconomic conditions are common to all objects and change only over time, microeconomic conditions are object-specific and thus vary both among objects and through time. The simultaneous modeling of microeconomic and macroeconomic conditions has proven to be extremely difficult for these applications due to the mismatch of dimensions, potential interactions, and the high number of parameters to estimate. By marrying recurrent neural networks with conditional factor models, we propose a new white-box machine learning method, the recurrent double-conditional factor model (RDCFM), which allows for the modeling of the simultaneous and combined influence of micro- and macroeconomic conditions while being parsimoniously parameterized. Due to the low degree of parameterization, the RDCFM generalizes well and estimation remains feasible even if the time-series and the cross-section are large. We demonstrate the suitability of our method using an application from the financial economics literature.
Keywords: Machine learning; Recurrent neural network; Factor model; Panel data analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00291-024-00771-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:orspec:v:47:y:2025:i:1:d:10.1007_s00291-024-00771-1
Ordering information: This journal article can be ordered from
http://www.springer. ... research/journal/291
DOI: 10.1007/s00291-024-00771-1
Access Statistics for this article
OR Spectrum: Quantitative Approaches in Management is currently edited by Rainer Kolisch
More articles in OR Spectrum: Quantitative Approaches in Management from Springer, Gesellschaft für Operations Research e.V.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().