EconPapers    
Economics at your fingertips  
 

Positive and negative solutions for the nonlinear fractional Kirchhoff equation in $${\mathbb {R}}^{N}$$ R N

Yang Wang () and Yansheng Liu ()
Additional contact information
Yang Wang: Shandong Management University
Yansheng Liu: Shandong Normal University

Partial Differential Equations and Applications, 2020, vol. 1, issue 5, 1-19

Abstract: Abstract This paper is concerned with the following nonlinear fractional Kirchhoff equation $$\begin{aligned} (a+\lambda \int _{{\mathbb {R}}^{N}}|(-\varDelta )^{\frac{s}{2}}u|^{2}dx)(-\varDelta )^{s}u+V(x)u=f(x,u)+ w(x)|u|^{q-2}u,\ \ \ x\in {\mathbb {R}}^{N}, \end{aligned}$$ ( a + λ ∫ R N | ( - Δ ) s 2 u | 2 d x ) ( - Δ ) s u + V ( x ) u = f ( x , u ) + w ( x ) | u | q - 2 u , x ∈ R N , where $$N>2s,\ a>0, \lambda \ge 0$$ N > 2 s , a > 0 , λ ≥ 0 is a parameter, $$(-\varDelta )^{s}$$ ( - Δ ) s denotes the fractional Laplacian operator of order $$s\in (0, 1),\ 2_{s}^{\star }=\frac{2N}{N-2s},\ V$$ s ∈ ( 0 , 1 ) , 2 s ⋆ = 2 N N - 2 s , V and f are continuous, and $$w(x)\in L^{\frac{2_{s}^{\star }}{2_{s}^{\star }-q}}({\mathbb {R}}^{N}, {\mathbb {R}}^{+})$$ w ( x ) ∈ L 2 s ⋆ 2 s ⋆ - q ( R N , R + ) with $$1

Keywords: Fractional Kirchhoff equation; Variational method; Pohozaev identity; Ekeland’s variational principle; 35J20; 35J60 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42985-020-00030-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:1:y:2020:i:5:d:10.1007_s42985-020-00030-2

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/

DOI: 10.1007/s42985-020-00030-2

Access Statistics for this article

Partial Differential Equations and Applications is currently edited by Zhitao Zhang

More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:pardea:v:1:y:2020:i:5:d:10.1007_s42985-020-00030-2