Positive and negative solutions for the nonlinear fractional Kirchhoff equation in $${\mathbb {R}}^{N}$$ R N
Yang Wang () and
Yansheng Liu ()
Additional contact information
Yang Wang: Shandong Management University
Yansheng Liu: Shandong Normal University
Partial Differential Equations and Applications, 2020, vol. 1, issue 5, 1-19
Abstract:
Abstract This paper is concerned with the following nonlinear fractional Kirchhoff equation $$\begin{aligned} (a+\lambda \int _{{\mathbb {R}}^{N}}|(-\varDelta )^{\frac{s}{2}}u|^{2}dx)(-\varDelta )^{s}u+V(x)u=f(x,u)+ w(x)|u|^{q-2}u,\ \ \ x\in {\mathbb {R}}^{N}, \end{aligned}$$ ( a + λ ∫ R N | ( - Δ ) s 2 u | 2 d x ) ( - Δ ) s u + V ( x ) u = f ( x , u ) + w ( x ) | u | q - 2 u , x ∈ R N , where $$N>2s,\ a>0, \lambda \ge 0$$ N > 2 s , a > 0 , λ ≥ 0 is a parameter, $$(-\varDelta )^{s}$$ ( - Δ ) s denotes the fractional Laplacian operator of order $$s\in (0, 1),\ 2_{s}^{\star }=\frac{2N}{N-2s},\ V$$ s ∈ ( 0 , 1 ) , 2 s ⋆ = 2 N N - 2 s , V and f are continuous, and $$w(x)\in L^{\frac{2_{s}^{\star }}{2_{s}^{\star }-q}}({\mathbb {R}}^{N}, {\mathbb {R}}^{+})$$ w ( x ) ∈ L 2 s ⋆ 2 s ⋆ - q ( R N , R + ) with $$1
Keywords: Fractional Kirchhoff equation; Variational method; Pohozaev identity; Ekeland’s variational principle; 35J20; 35J60 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42985-020-00030-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:1:y:2020:i:5:d:10.1007_s42985-020-00030-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/
DOI: 10.1007/s42985-020-00030-2
Access Statistics for this article
Partial Differential Equations and Applications is currently edited by Zhitao Zhang
More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().