EconPapers    
Economics at your fingertips  
 

Describing limits of integrable functions as grid functions of nonstandard analysis

Emanuele Bottazzi ()
Additional contact information
Emanuele Bottazzi: University of Pavia

Partial Differential Equations and Applications, 2021, vol. 2, issue 4, 1-25

Abstract: Abstract In functional analysis, there are different notions of limit for a bounded sequence of $$L^1$$ L 1 functions. Besides the pointwise limit, that does not always exist, the behaviour of a bounded sequence of $$L^1$$ L 1 functions can be described in terms of its weak- $$\star $$ ⋆ limit or by introducing a measure-valued notion of limit in the sense of Young measures. Working in Robinson’s nonstandard analysis, we show that for every bounded sequence $$\{z_n\}_{n \in \mathbb {N}}$$ { z n } n ∈ N of $$L^1$$ L 1 functions there exists a function of a hyperfinite domain (i.e. a grid function) that represents both the weak- $$\star $$ ⋆ and the Young measure limits of the sequence. This result has relevant applications to the study of nonlinear PDEs. We discuss the example of an ill-posed forward–backward parabolic equation.

Keywords: Generalized functions; Nonstandard analysis; Nonlinear ill-posed problems; 46F30; 46S20; 47J06; 35K55 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42985-021-00093-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:2:y:2021:i:4:d:10.1007_s42985-021-00093-9

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/

DOI: 10.1007/s42985-021-00093-9

Access Statistics for this article

Partial Differential Equations and Applications is currently edited by Zhitao Zhang

More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:pardea:v:2:y:2021:i:4:d:10.1007_s42985-021-00093-9