Equivalences of PDE systems associated to degenerate para-CR structures: foundational aspects
Joël Merker ()
Additional contact information
Joël Merker: CNRS, Université Paris-Saclay
Partial Differential Equations and Applications, 2022, vol. 3, issue 1, 1-57
Abstract:
Abstract Let $${\mathbb {K}}= {\mathbb {R}}$$ K = R or $${\mathbb {C}}$$ C . We study basic invariants of submanifolds of solutions $${\mathscr {M}} = \{ y = Q(x,a,b)\} = \{b = P(a,x,y)\}$$ M = { y = Q ( x , a , b ) } = { b = P ( a , x , y ) } in coordinates $$x \in {\mathbb {K}}^{n\geqslant 1}$$ x ∈ K n ⩾ 1 , $$y \in {\mathbb {K}}$$ y ∈ K , $$a \in {\mathbb {K}}^{m\geqslant 1}$$ a ∈ K m ⩾ 1 , $$b \in {\mathbb {K}}$$ b ∈ K under split-diffeomorphisms $$(x,y,a,b) \,\longmapsto \, \big ( f(x,y),\,g(x,y),\,\varphi (a,b),\,\psi (a,b) \big )$$ ( x , y , a , b ) ⟼ ( f ( x , y ) , g ( x , y ) , φ ( a , b ) , ψ ( a , b ) ) . Two Levi forms exist, and have the same rank $$r \leqslant \mathsf{min}(n,m)$$ r ⩽ min ( n , m ) . If $${\mathscr {M}}$$ M is k-nondegenerate with respect to parameters and l-nondegenerate with respect to variables, $$\mathsf{Aut}({\mathscr {M}})$$ Aut ( M ) is a local Lie group of dimension: $$\begin{aligned} \mathsf{dim}\, \mathsf{Aut}({\mathscr {M}}) \leqslant (n+1)\, \genfrac(){0.0pt}1{n+1+2k+2l}{n+1} + (m+1)\, \genfrac(){0.0pt}1{m+1+2k+2l}{m+1}. \end{aligned}$$ dim Aut ( M ) ⩽ ( n + 1 ) n + 1 + 2 k + 2 l n + 1 + ( m + 1 ) m + 1 + 2 k + 2 l m + 1 . Mainly, our goal is to set up foundational material addressed to CR geometers. We focus on $$n = m = 2$$ n = m = 2 , assuming $$r = 1$$ r = 1 . In coordinates (x, y, z, a, b, c), a local equation is: $$\begin{aligned} z = c + xa + \beta \,xxb + {\underline{\beta }}\,yaa + c\,\mathrm{O}_{x,y,a,b}(2) + \mathrm{O}_{x,y,a,b,c}(4), \end{aligned}$$ z = c + x a + β x x b + β ̲ y a a + c O x , y , a , b ( 2 ) + O x , y , a , b , c ( 4 ) , with $$\beta $$ β and $${\underline{\beta }}$$ β ̲ representing the two 2-nondegeneracy invariants at 0. The associated para-CR pde system: $$\begin{aligned} z_y = F\big (x,y,z,z_x,z_{xx}\big ) \quad and \quad z_{xxx} = H\big (x,y,z,z_x,z_{xx}\big ), \end{aligned}$$ z y = F ( x , y , z , z x , z xx ) a n d z xxx = H ( x , y , z , z x , z xx ) , satisfies $$F_{z_{xx}} \equiv 0$$ F z xx ≡ 0 from Levi degeneracy. We show in details that the hypothesis of 2-nondegeneracy with respect to variables is equivalent to $$F_{z_x z_x} \ne 0$$ F z x z x ≠ 0 . This gives a CR-geometric meaning to the first two para-CR relative differential invariants encountered independently in another paper, joint with Paweł Nurowski.
Keywords: Primary 35B06; 58J70; 34C14; 32V40; 53B25; 58A15; 22E05; 53A55; Secondary 34A26; 53A15; 32V35 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42985-021-00138-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:3:y:2022:i:1:d:10.1007_s42985-021-00138-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/
DOI: 10.1007/s42985-021-00138-z
Access Statistics for this article
Partial Differential Equations and Applications is currently edited by Zhitao Zhang
More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().