EconPapers    
Economics at your fingertips  
 

A posteriori verification of the positivity of solutions to elliptic boundary value problems

Kazuaki Tanaka () and Taisei Asai
Additional contact information
Kazuaki Tanaka: Waseda University
Taisei Asai: Waseda University

Partial Differential Equations and Applications, 2022, vol. 3, issue 1, 1-25

Abstract: Abstract The purpose of this paper is to develop a unified a posteriori method for verifying the positivity of solutions of elliptic boundary value problems by assuming neither $$H^2$$ H 2 -regularity nor $$ L^{\infty } $$ L ∞ -error estimation, but only $$ H^1_0 $$ H 0 1 -error estimation. In (J Comput Appl Math 370:112647, 2020), we proposed two approaches to verify the positivity of solutions of several semilinear elliptic boundary value problems. However, some cases require $$ L^{\infty } $$ L ∞ -error estimation and, therefore, narrow applicability. In this paper, we extend one of the approaches and combine it with a priori error bounds for Laplacian eigenvalues to obtain a unified method that has wide application. We describe how to evaluate some constants required to verify the positivity of desired solutions. We apply our method to several problems, including those to which the previous method is not applicable.

Keywords: Computer-assisted proofs; Elliptic boundary value problems; Error bounds; Numerical verification; Positive solutions; 35J25; 35J61; 65N15 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42985-021-00143-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:3:y:2022:i:1:d:10.1007_s42985-021-00143-2

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/

DOI: 10.1007/s42985-021-00143-2

Access Statistics for this article

Partial Differential Equations and Applications is currently edited by Zhitao Zhang

More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:pardea:v:3:y:2022:i:1:d:10.1007_s42985-021-00143-2