Transport equations with inflow boundary conditions
L. Ridgway Scott () and
Sara Pollock
Additional contact information
L. Ridgway Scott: University of Chicago
Sara Pollock: University of Florida
Partial Differential Equations and Applications, 2022, vol. 3, issue 3, 1-20
Abstract:
Abstract We provide bounds in a Sobolev-space framework for transport equations with nontrivial inflow and outflow. We give, for the first time, bounds on the gradient of the solution with the type of inflow boundary conditions that occur in Poiseuille flow. Following ground-breaking work of the late Charles Amick, we name a generalization of this type of flow domain in his honor. We prove gradient bounds in Lebesgue spaces for general Amick domains which are crucial for proving well posedness of the grade-two fluid model. We include a complete review of transport equations with inflow boundary conditions, providing novel proofs in most cases. To illustrate the theory, we review and extend an example of Bernard that clarifies the singularities of solutions of transport equations with nonzero inflow boundary conditions.
Keywords: 35M35; 65M60 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42985-022-00169-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:3:y:2022:i:3:d:10.1007_s42985-022-00169-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/
DOI: 10.1007/s42985-022-00169-0
Access Statistics for this article
Partial Differential Equations and Applications is currently edited by Zhitao Zhang
More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().