EconPapers    
Economics at your fingertips  
 

Oscillatory decay in a degenerate parabolic equation

Michael Winkler ()
Additional contact information
Michael Winkler: Universität Paderborn

Partial Differential Equations and Applications, 2022, vol. 3, issue 4, 1-15

Abstract: Abstract The Cauchy problem in $$\mathbb {R}^n$$ R n , $$n\ge 1$$ n ≥ 1 , for the degenerate parabolic equation $$\begin{aligned} u_t=u^p \Delta u \qquad \qquad (\star ) \end{aligned}$$ u t = u p Δ u ( ⋆ ) is considered for $$p\ge 1$$ p ≥ 1 . It is shown that given any positive $$f\in C^0([0,\infty ))$$ f ∈ C 0 ( [ 0 , ∞ ) ) and $$g\in C^0([0,\infty ))$$ g ∈ C 0 ( [ 0 , ∞ ) ) satisfying $$\begin{aligned} f(t)\rightarrow + \infty \quad \text{ and } \quad g(t)\rightarrow 0 \qquad \text{ as } t\rightarrow \infty , \end{aligned}$$ f ( t ) → + ∞ and g ( t ) → 0 as t → ∞ , one can find positive and radially symmetric continuous initial data with the property that the initial value problem for ( $$\star $$ ⋆ ) admits a positive classical solution such that $$\begin{aligned} t^\frac{1}{p} \Vert u(\cdot ,t)\Vert _{L^\infty (\mathbb {R}^n)} \rightarrow \infty \qquad \text{ and } \qquad \Vert u(\cdot ,t)\Vert _{L^\infty (\mathbb {R}^n)} \rightarrow 0 \qquad \text{ as } t\rightarrow \infty , \end{aligned}$$ t 1 p ‖ u ( · , t ) ‖ L ∞ ( R n ) → ∞ and ‖ u ( · , t ) ‖ L ∞ ( R n ) → 0 as t → ∞ , but that $$\begin{aligned} \liminf _{t\rightarrow \infty } \frac{t^\frac{1}{p} \Vert u(\cdot ,t)\Vert _{L^\infty (\mathbb {R}^n)}}{f(t)} =0 \end{aligned}$$ lim inf t → ∞ t 1 p ‖ u ( · , t ) ‖ L ∞ ( R n ) f ( t ) = 0 and $$\begin{aligned} \limsup _{t\rightarrow \infty } \frac{\Vert u(\cdot ,t)\Vert _{L^\infty (\mathbb {R}^n)}}{g(t)} =\infty . \end{aligned}$$ lim sup t → ∞ ‖ u ( · , t ) ‖ L ∞ ( R n ) g ( t ) = ∞ .

Keywords: Degenerate parabolic equation; Decay rates of solutions; Oscillation; Primary 35B40; Secondary 35K65 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42985-022-00186-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:3:y:2022:i:4:d:10.1007_s42985-022-00186-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/

DOI: 10.1007/s42985-022-00186-z

Access Statistics for this article

Partial Differential Equations and Applications is currently edited by Zhitao Zhang

More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:pardea:v:3:y:2022:i:4:d:10.1007_s42985-022-00186-z