Finite element approximation of invariant manifolds by the parameterization method
Jorge Gonzalez (),
J. D. Mireles James () and
Necibe Tuncer ()
Additional contact information
Jorge Gonzalez: Georgia Institute of Technology
J. D. Mireles James: Florida Atlantic University
Necibe Tuncer: Florida Atlantic University
Partial Differential Equations and Applications, 2022, vol. 3, issue 6, 1-38
Abstract:
Abstract We combine the parameterization method for invariant manifolds with the finite element method for elliptic PDEs, to obtain a new computational framework for high order approximation of invariant manifolds attached to unstable equilibrium solutions of nonlinear parabolic PDEs. The parameterization method provides an infinitesimal invariance equation for the invariant manifold, which we solve via a power series ansatz. A power matching argument leads to a recursive systems of linear elliptic PDEs—the so called homological equations—whose solutions are the power series coefficients of the parameterization. The homological equations are solved recursively to any desired order N using finite element approximation. The end result is an N-th order polynomial approximation of a chart map of the manifold, with coefficients in an appropriate finite element space. We implement the method for a variety of example problems having both polynomial and non-polynomial nonlinearities, on non-convex two dimensional polygonal domains (not necessary simply connected), for equilibrium solutions with Morse indices one and two. We implement a-posteriori error indicators which provide numerical evidence in support of the claim that the manifolds are computed accurately.
Keywords: Parabolic partial differential equations; Unstable manifold; Finite element analysis; Formal Taylor series; 68Q25; 68R10; 68U05 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42985-022-00214-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00214-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/42985/
DOI: 10.1007/s42985-022-00214-y
Access Statistics for this article
Partial Differential Equations and Applications is currently edited by Zhitao Zhang
More articles in Partial Differential Equations and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().