A Statistical Test for Differential Item Pair Functioning
Timo Bechger () and
Gunter Maris
Psychometrika, 2015, vol. 80, issue 2, 317-340
Abstract:
This paper presents an IRT-based statistical test for differential item functioning (DIF). The test is developed for items conforming to the Rasch (Probabilistic models for some intelligence and attainment tests, The Danish Institute of Educational Research, Copenhagen, 1960 ) model but we will outline its extension to more complex IRT models. Its difference from the existing procedures is that DIF is defined in terms of the relative difficulties of pairs of items and not in terms of the difficulties of individual items. The argument is that the difficulty of an item is not identified from the observations, whereas the relative difficulties are. This leads to a test that is closely related to Lord’s (Applications of item response theory to practical testing problems, Erlbaum, Hillsdale, 1980 ) test for item DIF albeit with a different and more correct interpretation. Illustrations with real and simulated data are provided. Copyright The Psychometric Society 2015
Keywords: item response theory; differential item functioning; identifiability; Rasch model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-014-9408-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:80:y:2015:i:2:p:317-340
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-014-9408-y
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().