A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests
Yi-Hsuan Lee () and
Zhiliang Ying
Psychometrika, 2015, vol. 80, issue 3, 748-775
Abstract:
Many large-scale standardized tests are intended to measure skills related to ability rather than the rate at which examinees can work. Time limits imposed on these tests make it difficult to distinguish between the effect of low proficiency and the effect of lack of time. This paper proposes a mixture cure-rate model approach to address this issue. Maximum likelihood estimation is proposed for parameter and variance estimation for three cases: when examinee parameters are to be estimated given precalibrated item parameters, when item parameters are to be calibrated given known examinee parameters, and when item parameters are to be estimated without assuming known examinee parameters. Large-sample properties are established for the cases under suitable regularity conditions. Simulation studies suggest that the proposed approach is appropriate for inferences concerning model parameters. In addition, not distinguishing between the effect of low proficiency and the effect of lack of time is shown to have considerable consequences for parameter estimation. A real data example is presented to demonstrate the new model. Choice of survival models for the latent power times is also discussed. Copyright The Psychometric Society 2015
Keywords: response time; time limit; power test; speed test; survival analysis; censoring; cure model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11336-014-9419-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:psycho:v:80:y:2015:i:3:p:748-775
Ordering information: This journal article can be ordered from
http://www.springer. ... gy/journal/11336/PS2
DOI: 10.1007/s11336-014-9419-8
Access Statistics for this article
Psychometrika is currently edited by Irini Moustaki
More articles in Psychometrika from Springer, The Psychometric Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().